
J. Fluid Mech. (1983), vol. 136, p p .  21Ck241 

Printed in Great Britain 
219 

Pattern selection for finite-amplitude convection 
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When a box of fluid-saturated porous material is heated from below, it is known that 
either a two- or three-dimensional convection pattern can occur depending on the 
initial configuration. By means of an analytic eigenfunction-expansion technique and 
a study of the phase-space dynamics of finite-amplitude disturbances we obtain (i) 
the regions within the space of initial conditions which lead to one or other of these 
competing states, and thereby (ii) the probability that a certain pattern will be 
realized, as well as (iii) the explicit form of the heat transferred by the patterns as 
it depends on aspect ratios. Cubic and nearly cubic boxes are considered, and the 
analysis applies for values of Rayleigh parameter from convection onset to 1.5 times 
critical. Our results correct several details appearing in the literature and explain 
observations made in previous numerical studies. 

1. Introduction 
A saturated porous medium heated from below will sustain a steady buoyancy- 

driven motion provided that a non-dimensional average vertical temperature gradient 
(a Rayleigh number) is moderate. For gradients that are too small, below a critical 
value, the saturating fluid is motionless and heat conduction occurs, while for too-large 
gradients time-dependent motions with varying degrees of complexity set in and heat 
convection dominates. We concentrate on the regime of steady convective motions and 
the resulting transport of heat, both ofwhich are important in many thermomechanical 
and geophysical situations. See Combarnous & Bories (1975) for a description of these 
applications. 

Convection in porous media in idealized situations has been studied numerically 
(e.g. Elder 1967; Straus & Schubert 1981) and in the laboratory (e.g. Schneider 1963; 
Elder 1967). These studies show that for a bounded region the particular convection 
pattern that occurs depends on the geometry of that region as well as the temperature 
gradient across it. Furthermore, Holst & Aziz (1972), Horne (1979) and Straus & 
Schubert (1979) have shown numerically for a cube with fixed parameters that two 
stable convection patterns, one two- and the other three-dimensional, can coexist. By 
trial they find that certain initial conditions lead to two-dimensional roll cells and 
others lead to a three-dimensional pattern. Straus & Schubert (1979) raise the question 
of whether it is 'possible to characterize from a probabilistic point of view sets of 
random initial conditions which lead to a particular dimensionality of convection. ' 
They leave this question unanswered. Our study shows that such probabilities can 
be calculated a t  least over a range of Rayleigh numbers and that more importantly 
the physical mechanism by which disturbances lead to a certain pattern can be 
explained. This involves an examination of the dynamics within the phase-space of 
finite-amplitude disturbances to the conductive state. The specific results obtained 
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complement those of Straus & Schubert (1979,1981) by filling in and correcting some 
of the details they present for lower Rayleigh numbers. The analytical structure we 
discover gives insight over the entire range of steady convection. 

We consider convection in three-dimensional rectangular boxes filled with a 
saturated porous material and heated from below. The purpose is to  discover the 
pattern structure of the multiple steady convection solutions, their domains of 
attraction in the space of initial disturbances, and show how those properties depend 
on the geometry of such boxes. We take the top and bottom of the box to be 
isothermal and the sides to be insulated. The fluid and solid properties are assumed 
constant. We present results for boxes whose dimensions lie near those of the cube 
so that our calculations may be compared with the numerical results of Straus & 
Schubert (1979), although the same methods apply for boxes of any dimension. For 
the cubic box convection first occurs a t  R, = 4n2 when a two-dimensional roll cell 
grows to a finite-amplitude pattern with R. We show that immediately above 
criticality i t  is the only stable pattern ; the three-dimensional state found by Zebib 
& Kassoy (1978) is unstable, contrary to a statement of Straus & Schubert (1981) 
that  i t  is the ‘motion ’ for P7c2 Q R < 4 . 5 ~ ~ .  Another three-dimensional pattern comes 
into existence as a linear mode grows a t  R = 4 . 5 ~ ~ .  However, we find i t  remains 
unstable from birth until R = 4.87n2, when it  gains stability and begins to compete 
with the two-dimensional pattern. This result corrects the lower bound to the 
Rayleigh-number range for stable three-dimensional convection given by Straus & 
Schubert (1981). Thereafter, and up to  the point where modes we have not accounted 
for become important and our approximation breaks down, the two- and three- 
dimensional patterns remain the only stable states. An a priori estimate puts the 
breakdown point at about Rayleigh number 1.5 times critical. This is confirmed by 
calculations of the heat transferred across the box which agree well with those 
obtained numerically by Straus & Schubert (1979) up to that value. 

Our analytical approach enables us to exhibit the boundaries which separate initial 
disturbances that evolve to  either the three-dimensional or two-dimensional pattern. 
This permits a calculation of the probability that a particular pattern will occur, given 
an initial probability distribution of disturbances. We find for the cube and a 
Rayleigh number of 50 that there is a 21 % 5 2 % chance that a disturbance of unit 
norm will lead to the three-dimensional pattern. Although conceptually simple, there 
are technical difficulties which have apparently prevented such calculations previously. 
One difficulty (homes with the need to  characterize all the accessible solutions 
(attractors). The structure of our problem allows us to show that there are no 
time-dependent attractors so that the only accessible solutions are the steady states. 
A second difficulty appears with the need to  calculate ‘ separatrix surfaces ’ - those 
boundaries between the space-filling domains of attraction. To our knowledge this 
is the first example of such computations. When a fluid system has two or more stable 
steady states, experiments must be performed with a care that precludes disturbances 
which will take the system from one state to another. For the porous-media system 
such techniques which were previously part of the ‘art ’ of the experimenter can now 
be made precise. 

The geometric picture of the disturbance phase space for the nonlinear problem 
provides the insight as to why certain patterns are unstable and among the competing 
stable patterns why one is preferred over the others for a given initial condition. The 
following illustrates the complexity of the situation. At a Rayleigh number 1.4 times 
critical and for a box formed by stretching a cube in a horizontal direction, there are 
29 distinct solutions (including the conduction state) of which there are three 
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qualitatively different stable patterns each with its own domain of attraction. The 
sequence that leads through increasing Rayleigh numbers to this situation begins 
below the critical value with the conduction state which is stable to  all disturbances. 
When convection first occurs, there is a single stable pattern which grows to  a small 
but finite amplitude, at which point a different finite-amplitude pattern stabilizes to 
a certain few disturbances. As Rayleigh number increases further, the new pattern 
becomes more popular and its domain of attraction grows. Finally a third finite- 
amplitude pattern gains stability and attracts its own set of disturbances in 
competition with the other two. 

The analytical penetration into the nonlinear regime is possible owing to three 
circumstances. The first, independent of the problem, is the existence of an analytical 
Galerkin-like eigenfunction-expansion technique, originally proposed by Ekhaus 
(1965), and modified by Rosenblat (1979). As in standard procedures, the nonlinear 
solution is expanded as a sum of time-dependent amplitudes modifying the eigen- 
functions associated with the linear operator, from which a system of ordinary 
differential equations determining the time dependence is deduced as a necessary 
condition. However, Rosenblat has shown it is possible to truncate to obtain 
bifurcation equations which apply for a range of the bifurcation parameter that 
includes several separated branch points (eigenvalues) of the linear problem. This 
differs from a procedure such as StuarkWatson or Liapunov-Schmidt, where 
expansions are made about an isolated (although perhaps multiple) branch point. The 
approximation obtained via the modified technique is asymptotically valid for 
solutions of small amplitude and for a finite but limited range of bifurcation 
parameter. Our principal results come from an ll-mode truncation which is found 
to be a good approximation for R < 1.5R, = R* and amplitudes O{[(R*~-&c)/R*]~} 
(note our scaling in $2). Two effects can occur to limit the approximation. Modes not 
included in the interaction may become important and/or higher-order contributions 
by self-interactions of included modes may become significant. Rosenblat’s technique 
has been used successfully in various other convection problems where there also 
occur bifurcations from multiple eigenvalues (Rosenblat, Davis & Homsy 1982 ; 
Rosenblat 1982). The second circumstance which forms a basis for our analysis is the 
simplicity of the eigenfunctions of the linear theory. They are products of sines and 
cosines, and hence the coefficients in the truncated system which are inner products 
of such terms can be obtained in closed form as functions of the box geometry. The 
third circumstance derives from the special structure of nonlinearity for the porous- 
medium problem. That structure allows the approximating system of nonlinear 
differential equations to be treated analytically and in a global sense, even though 
the powerful tools of phase-plane analysis are not available since the ph+se space for 
the system is of dimension higher than two. 

We begin the study with a formulation of the problem, followed by a review of 
the existing linear theory and an outline of the method of finite-amplitude analysis. 
We then derive the equations that describe the interactions among three linearly 
unstable structures and which include the effects of geometry changes. Using this 
system, we first examine the cubic geometry and trace in detail the existence and 
stability of the multiple finite-amplitude convection patterns from R = R, to 
R = 1.5R, where the truncation ceases to be a good approximation. This analysis 
yields a complete determination of the pattern to which a particular disturbance will 
evolve and leads to an example calculation of the probability that a certain structure 
will occur. Then, the results for the cube, which include as a subcase those of Zebib 
& Kassoy (1978), are discussed and compared further with the numerical computations 
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of Straus & Schubert (1979). Finally, we trace the existence and stability sequence 
from R = R, for a rectangular box with dimensions near the cube but with non-square 
planform. Here we obtain the explicit form of the Nusselt number as a function of 
Rayleigh number and aspect ratios, appropriate within the limits of the 
approximation. 

2. Formulation 
Consider a rectangular box with horizontal aspect ratios h,, h, relative to vertical 

height 1 and containing a porous material of permeability k and fixed porosity which 
is saturated with a Boussinesq fluid of viscosity v and coefficient of thermal expansion 
a. The equations governing arbitrary disturbances (e.g. Homsy & Sherwood 1976) 
in the non-dimensional velocity, temperature and pressure fields v ,  8 and p from the 
basic conduction state consisting of linear temperature profile extending from hot 
bottom plate (AT hotter) to cooler top plate are 

u-v = 0, (2.1 a )  

0 = -Up+R@k-v, (2.lb) 

% f i v . u e - f i v - k  = we. (2 . lc )  
at 

Here, since many porous materials of interest have low permeabilities, we have set 
the Prandtl number ( v / K m )  12/k equal to infinity. The effective fluid-solid thermal 
diffusivity K,, which along with k enters the definition of the Rayleigh number 
R = gaATkl/Km Y, make these numbers modified Rayleigh and Prandtl numbers. 
Here g is the magnitude of gravity, which acts vertically, antiparallel to the unit 
vector k. 

We have scaled (2.1) with characteristic length, velocity, temperature and time 
given by I ,  Rkm/ l ,  AT, and 12H/K, respectively, where H = pmCpm/pf Cpf is the ratio 
of heat capacity of the fluid-solid mixture to that of the fluid. Our velocity scale, which 
differs from that commonly used (e.g. Straus & Schubert 1979) by the factor B, leads 
to a convenient form of the linearized operator corresponding to  (2.1). 

The boundary conditions are isothermal top and bottom, insulated sidewalls, and 
no flow through the boundary of the box: 

(2.1 e )  

v - n  = 0 on all boundaries. (2.lg) 

Here we have used rectangular Cartesian coordinates with z increasing in a direction 
opposite to  gravity, and the x- and y-axes parallel to  the box sides in a right-handed 
system in which the centre of the box lies at (0, 0 ,  a). 
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FIGURE 1 .  The Rayleigh numbers for neutral stability of several modes as a function of the 
dimension of the square planform (h, = h, = h). Four pairs of the neutral curves are coincident 
owing to the (s, y) symmetry. 

3. Linear theory 
The theory for the linearized version of (2.1) is due to  Beck (1972). Separation of 

variables leads to a complete set of eigenfunctions (u lmn,  Olmn)  with corresponding 
eigenvalues Rlmn, which characterize the non-oscillatory infinitesimal disturbances 
of the system. The disturbance structures are products of sines and cosines with 
wavenumbers (1, m, n)  in the (r,  y, z)-directions, 

vl(zmn) = - nxLi(L+ M)-+ sin ZP cos m$ cos nnz, (3.1~) 

z ~ ~ ( ~ ~ ~ )  = -nnM+(L + M)-+ cos ZP sin m$ cos nnz, (3.lb) 

va(lmn) = ( L + M ) ~ O ( ~ ~ ~ )  = cos Z? cos m$ sin nnz, (3 . lc ,d)  

The locus of points in the (R, h,, h,)-parameter space, for a fixed eigenfunction, for 
where L = ( l n / l ~ ~ ) ~ ,  M = ( m ~ / h , ) ~  and 9 = (x+4hl) n/hl ,$ = (y+$h,)n/h,. 

which infinitesimal disturbances neither grow nor decay is given by 

For each disturbance structure, labelled by its wavenumbers (1, m, n) ,  this represents 
a neutral surface above the (hl ,  h,)-plane demarking the boundary between stability 
and instability for such disturbances. A section through some of those surfaces for 
boxes with square planform is shown in figure 1 .  

For most boxes there is a unique structure associated with the most unstable 
disturbance. However, as a map due to Beck (figure 2) of most unstable structure 
against box dimensions shows, there are segments of curves in the (h l ,  &)-plane for 
which two structures are equally unstable and isolated points a t  which three and at 
most four different structures compete when the conduction solution loses stability. 

We focus on the triple multiplicity a t  aspect ratios (hl,h,) = (24, 24), where an 
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FIGURE 2. (After Beck 1972.) A map showing how the structure (x-, y-wavenumber) of the 
most-unstable disturbance depends on the aspect ratios h, ,  h,. The z-wavenumber for these 
disturbances is unity. 

x-roll, y-roll and three-dimensional pattern compete, and treat the cube as a 
perturbation from that geometry. By a smooth deformation of that  geometry to  the 
cube the bifurcation structure at the triple multiplicity is also smoothly deformed 
to the structure we observe using Rosenblat’s method. This guarantees that all of 
the bifurcations we observe at finite amplitude are present in the set of exact solutions 
to the partial differential equations-none have been introduced by the act of 
truncating. There is good reason to be careful concerning this point since cases where 
the truncation of an eigenfunction expansion have introduced spurious solutions are 
amply documented (Marcus 1981 ; Treve & Manley 1982; Rosenblat 1979). 

4. Method of finite-amplitude analysis 
Following Rosenblat (1982) we take the inner product of the nonlinear disturbance 

equations, considered as a vector equation for x = ( v , @  = [zlr xz.x3,xq], with the 
eigenfunctions of linear theory xlmn, to  obtain a countable sequence of necessary 
conditions, one for each wavenumber triplet: 

Xlmn,  L- = (*-Rim,) <Lo, o t  X41mn’ X31mnl, x> 

+ (Xlmn, N ( X ,  x)) for all ( I ,  m, n ) .  (4.1) 

Here the ( , ) indicates a Euclidean inner product of vectors followed by an 
integration over the volume of the box. The 4 x 4 matrix L has a single non-zero entry 
of unit value a t  the intersection of the fourth row and fourth column; only the 
time-derivative of the temperature appears on the left-hand side. N ( x , x )  is a 
four-vector representing the convective nonlinearity ; its only non-zero component 
appears in the fourth position and has the value 

3 

-Rqx,,x,,x3]~Vx, = -R+V.VO. (4.2) 
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The solution is written as a finite sum of modes from linear theory each modified 
by a time-dependent amplitude. A mode is included if i t  meets one of two criteria: 

(i) it  grows according to linear theory a t  a given value of Rayleigh number - we 
call these primary modes; 

(ii) i t  is produced by the quadratic nonlinear interaction (4.2) of two primary 
modes; this may be either by a mode interacting with itself or with another - these 
are called secondary modes. 

For a good approximation to a fixed Rayleigh number, one expects that  all the 
growing modes must be included. In  this paper we shall judge validity by comparing 
our results with the numerical computations of Straus & Schubert. 

The long-time dynamics of any disturbance sufficiently close to a sum of the 
unstable modes can be described in the finite-dimensional space of the amplitudes 
of these unstable modes. When there are two or more stable steady solutions, the 
probability that one will be realized given an arbitrary initial disturbance can be 
calculated on the basis of probabilities within the finite-dimensional subspace. This 
is demonstrated in 35.3. 

5. Finite-amplitude convection near three competing linearly unstable 
structures 

5.1. Derivation of the amplitude equations 

As the temperature difference across a box with aspect ratios (hl ,  h,) = (24,2$) is 
increased, convection occursat R, = 40.68, where, by linear theory (figure l) ,  the x-roll, 
y-roll and a three-dimensional [ 11 11-mode simultaneously go unstable. We seek an 
approximation to the full solution for an interval of Rayleigh numbers above critical 
for which these three are the only growing modes. Depending on the particular 
geometry (within a neighbourhood of (hl, h,) = (24, 24)), the double 2- or double y-roll 
is the next structure to  go unstable and hence its omission from the set of primary 
modes gives an a priori limit in Rayleigh number to the validity of our 
approximation. 

The three chosen primary modes interact through the nonlinearity to produce eight 
secondary modes as schematically illustrated in table 1. All secondary modes decay 
according to linear theory. However, if any of these interact, in turn, with the 
primaries to  reproduce primaries, this spatial resonance can lead to finite-amplitude 
steady states. We assume a truncated solution 

Nt) = E almn(t) Xlmn,  ( 5 . 1 ~ )  

which consists of the primary and secondary modes whose indices are listed in the 
set 

S = {(Oll), (101), ( i l l ) ,  (002), (202), (022), (112), (212), (122), (012), (102)). (5.1b) 

Painvise interaction of secondary with primary modes does reproduce primaries as 
indicated in table 1 .  It also yields others which we shall call tertiary modes. Using 
assumption (5.1) in (4.1), we calculate the projections on the primary and secondary 
eigenmodes ( ( 1 ,  m, n) E S) .  This yields an eleven-dimensional first-order system of 
ordinary differential equations in the amplitudes ulna%, (I, m, n)  ES. Here we have 
neglected the tertiary modes, since they are not coupled to the primaries and hence 
can be kept small by restricting to small primary amplitudes. Furthermore, we may 
reduce from an 11- to a 3-dimensional system by putting the rates of changes of the 

s 
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Primary 

Secondary 

- - - - - - 

% 
101 

01 1 

111 

I 
Secondary I 

- - - Tertiary - - _ -  -1 

Primary , I Primary 

101 011 111 

002 112 012 
212 

002 102 
122 

002 
202 
022 

002 

101 
103 

QlJ 
013 

113 

- 101 121 011 111 001 
301 123 013 113 201 
303 21 1 003 
103 213 203 

211 011 101 001 111 
213 013 103 003 113 

031 121 021 
033 123 023 

111 111 001/221 101 011 
113 113 003/223 103 013 
131 131 021j201 121 211 
133 133 0231203 123 213 

212 

111 
113 
31 1 
313 

20 1 
203 
22 1 
223 

- 101/301 
1031321 
1211303 
1231323 

122 

221 
02 1 
223 
023 

111 
113 
131 
133 

011103 1 
0131033 
2111231 
2131233 

TABLE 1. The modes produced by the symmetric part of the nonlinear interaction N ( r ,  8 )  + N(s, r )  
of modes r and s for the 1 1-mode truncation. The primary modes mix to yield secondary modes, 
which can then interact with the primaries to reproduce primaries (underlined) as well as tertiary 
modes. The quarternary modes due to fourth-order interactions are not shown. 

eight secondary modes to zero, and then eliminating those modes from the other three 
equations. 

To illustrate this procedure we specialize to the simplest physical subcase of our 
11-mode truncation. For aspect ratios (h,, h,) = (Z( 2)--s), -s a small positive number, 
the y-roll goes unstable first and very close to onset the solution can be represented 
by the growing y-roll xoll and a single secondary mode, the motionless temperature 
field xoi2: 

x = a(t) x,,, + b( t )  x,,,. 

Substitution in (4.1) yields the system of amplitude equations 

(5 .2b )  

which neglects the higher-order mode [013] produced by the mixing of the primary 
[Ol  11 and secondary [002] modes. This may restrict the analysis to small amplitudes 
of the primary mode. Although the quantity &-@02 is infinite, the product 

( @ - - 4 0 2 )  (LO, 0 ~ ~ 4 0 0 , ~  G 0 0 2 1 .  x,,,), 

is finite and takes the value -8n2, as can be seen by a simple argument which views 
the motionless [002]-state as a limiting case of long-wavelength motion. 

Close to the onset of convection, the secondary mode will equilibrate much more 
rapidly than the primary mode and hence we may set its time derivative in (5.2b) 
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to zero. Solving that equation for the secondary mode, and substituting in (5.2a), 
yields the Landau-type equation 

- da = (R4-R9Ka- - -a3 .  2n Rx2 
dt 8 ht (5.3) 

This simplification preserves both the structure and stability of the steady solutions, 
as verified by comparing a phase-plane analysis of system (5.2) with the solutions 

For the ll-mode truncation the same properties are preserved provided the 
amplitudes of the primary modes are sufficiently small (finite-dimensional Invariant 
Manifold Theorem - e.g. Hartman 1964, theorem 6.2, p. 243). The reduced three- 
dimensional system can be put in final form by the change of variables 

x = a:,,, y = a:,,, z = a:ll (5.5a, b,  c )  

of (5.3). 

to yield 

(2n)-lX dx = z{2(R4-'01) R [ J ' ( h l ) x + R ( h l , h 2 ) y + C ( h l , h , ) z ] } ,  (5 .5~)  
hl 

1 1  
r2 s2' 

where 
A2 -+- (5.6a) 

B ( r , s )  = E{r'--[(->:-(A+~)]l(~(~-p)+;)(;+;)~}, 1 R  1 1  1 1 1 1 1  (5.6b) 
8 rs 2 n2 

c ( r , s )  = ?{A--[(-) 1 R I  -(G+$)]'-(L+L) 1 
8 2r 8 n2 [GAsI4 A G 

n A  s 2  1 1 
1 6 r  2 r  s 

D(r , s )  - { --- ( --- ) [(:I - (; + 441' (5 + A + a) 
+-[(->"-(G+;)]'&}, 1 R  (5.64 
4 712 

4 1  
F ( r )  = ?(L) G2(r, s) G -+- 

8 r2 ' r2 s 2 '  

H ( r , s )  = ~ { ( 3 - - 2 [ ; + r ] } - ~ .  s 4  

(5.6e) 

(5.6h) 

The coefficient F which arises from the resonant interaction of the motionless 
temperature field ([002]-mode) with the x- and y-roll structures is always positive. 
The self-interaction of the x-roll produces a stabilizing contribution to the motionless 
temperature field which in turn stabilizes the growth of the x-roll. Balanced by the 
linear growth of the x-roll, a steady finite-amplitude roll-pattern becomes possible. 
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Such an interplay produced the solution of (5.3). However, the influence on the growth 
of the x-roll by the interaction with the other modes complicates the situation here. 

The growth-limiting effect (due to three-step interactions) which the z-roll (and 
y-roll, by symmetry) exerts upon itself is due to  a single resonant interaction path 
which leads through the motionless temperature field ([002]-mode). On the other 
hand, each of the Coefficients B, C ,  D and E has, besides the contribution through 
the motionless temperature field represented by the first term within the curly 
brackets, other contributions due to alternate interaction paths. Each of these other 
terms in each of the coefficients has a factor in the denominator which depends on 
R and is of the form 

These represent the distance of the parameter @ from the point of linear instability 
of the mediating mode. For example, in the coefficient B the [112]-mode mediates, 
while in coefficient C(h,,  h,) both the [212]- and [102]-modes are intermediaries. Since 
all the intermediaries are secondary modes, they are linearly stable for R < 60 (figure 
l), the range of good approximation, and therefore each of these factors is negative. 
In  coefficients C and E they multiply negative terms, and hence yield a positive 
contribution to the coefficient and add to its growth-limiting effect. However, in 
coefficients B and D the negative factors multiply terms which can have either sign 
depending on the aspect ratios. Nevertheless, computations show that coefficients B 
and D are growth-limiting for all 0.5 < h,, h, < 1.5 and for R < 60, suggesting that 
when growth-enhancing effects appear they are overcome by the growth-limiting 
effects of the first term in these coefficients. I n  summary, all the interactions tend 
to stabilize the growth of the primary modes in the regime where our approximation 
applies. This leads to the question : which of these apparent solutions is preferred and 
why? Sections 5.2 and 5.5 examine the solutions of system (5 .5)  and discuss this 
question in two different cases. 

n[@ - @,,I. 

5.2. The cubic box 

For comparison with and extension of previous results, we first study system (5.5) 
a t  the cubic geometry (h l ,  h,) = (1 , l )  where R, = R,,, = R,,, = 4 7 ~ ~  < R,,, = 4.57~~.  
As first pointed out by Bauer, Keller & Reiss (1975), such ‘splitting’ of multiple 
eigenvalues may lead to  secondary bifurcations. This has been illustrated for various 
convection problems by Rosenblat et al. (1982) and Rosenblat (1982). The ‘splitting’ 
parameter A is defined to be A = 411-&c = 0.38, 

and we call the distance from convection onset 

h = &-&,. 
This brings (5 .5)  into the form 

dx 
(2n)-’- = x{2h-R[Fz+By+ CZ]}, (5.7a) 

dt 

(27~)~’- dY = y{2h- R[Bx+Fy+Cz]},  
dt 

(5.76) 

dz 
dt 

(27~)~’- = z { 2 / 2  ( ~ - ~ ) - R [ D Z + D ~ + E Z ] ) ,  (5.7c) 

where the coefficients are evaluated a t  (h l ,  h,) = (1,l)  and depend only on R. The 
phase space for solutions of system (5.7) is the positive octant of (z, y, z)-space. Each 
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quantity in brackets on the right-hand side vanishes on a plane in three-space, and 
when such planes intersect the positive octant they partition it into regions in which 
the triplet of derivatives maintains the same signs. The relative positions of these 
planes in space varies with h and determines the number, structure and stability of 
the convection patterns. 

The partitioning of the phase space into regions bounded by planes is the property 
of system (5.7) which makes the global analysis possible. And such a structure is a 
more general property of the convection system than may be evident from our 
analysis so far. Indeed, as long as the modes in the truncation are selected by the 
criteria outlined in $4, and only second-order interactions are considered, any 
truncated system given through (4.1) can be reduced to a system partitioned by 
hyperplanes. To see this consider the nonlinear interaction between any (u ,  0) 
satisfying boundary conditions (2.1 d-g), 

(eu-ve) = 0. 

By choosing 8 = O1 + 8,, u = u3,  one obtains 

(8, u3.ve2) = - (8, ~ 3 . ~ 8 1 )  

for any modes O,, 8,, u3. This means that (i) the mixing of a mode with itself cannot 
directly produce a contribution to its own growth, and (ii) if the nonlinear combination 
ca3 a2 appears in the evolution equation for a1 then there must appear a corresponding 
term -ca3a, in the a2 evolution equation. Writing down the linear and nonlinear 
contributions shows that a first-order quadratic system can be reduced to a first-order 
cubic system in only the growing modes. Furthermore, a change of variables 
analogous to (5.4) is possible provided that only one secondary mode is produced by 
each mixed interaction of primaries, and will deliver a system with the structure 
described above. We return to  an analysis of system (5.7). 

Below critical, h < 0, all three modes decrease in amplitude throughout the octant 
and the conduction state, the unique solution, is stable. At convection onset, h = 0, 
the planes where the curly brackets in (5.7a,b) vanish, which we shall call planes 
I and I1 respectively intersect the octant a t  the origin. On the other hand, plane 111, 
named analogously, has no points in common with the octant, so that z is decreasing 
everywhere there. As h increases, planes I and I1 cut the octant and intersect each 
other in a line as shown in figure 3 (a) .  This qualitative picture holds for 0 < h < 0.38 
( 4 7 ~ ~  < R < 4 . 5 7 ~ ~ ) .  

Over this Rayleigh-number interval there are three steady solutions of system (5.7) 
in addition to  the conduction solution. They are of two types: the pure modes where 
only one amplitude does not vanish, and a mixed 2-mode where two amplitudes are 
non-zero. Here, the pure modes are %-roll and y-roll convection patterns, marked by 
circles on the respective axes in figure 3. The magnitudes are given by (2/RF) A. The 
mixed 2-mode is a prescribed linear combination of z- and y-roll with equal parts 
of both by symmetry, and with magnitudes h(2/R) (F-B)/(det), where 

det = F2 - B2. 

The classification of steady convection solutions is completed with a third type, the 
mixed 3-mode, for which all three amplitudes are non-zero. Such a solution comes into 
existence at  higher Rayleigh number, as we shall see. 

For each pure-mode solution, say x = c ,  there correspond two steady convection 
solutions (definition (5.4)), 

(5.8) 

alOl = IfIct. 
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(a )  

I1 

I - 
Y 

FIGURE 3. Phase-space pictures for the cubic box, giving the steady convection solutions (circles) 
as determined by the intersections of planes I, 11, and 111, which move relative to one another as 
R/R,  increases from 1.125 (a )  through 1.218 (5) to 1.5 ( e ) .  The pure modes are denoted by P and 
mixed mode by M ;  the distance of planes I and I1 from the origin has been normalized. 

Each differs from the other by a reversal in direction of flow. With our assumption 
of constant physical properties, neither of these two solutions is preferred over the 
other. For a mixed 2-mode solution (z, y) = (a ,  b ) ,  there correspond four convection 
solutions, 

In a similar way, the mixed 3-mode in (x, y, 2)-space generates eight convection 
solutions, each differing from another by a sign change of one of its components. 

The stability of the solutions we are considering (0 < h < 0.38) can be read off the 
geometrical phase-space picture. Since z ( t )  decreases everywhere in the octant above 
the z = 0 plane, all trajectories approach the plane. It is sufficient to consider the 
stability of the solutions in that plane (an invariant set). One can show by phase-plane 

(alol,aoll) = (a$$), (4, -bi), (ai,-b$), (-at$). 
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FIGURE 4. The phase plane (quadrant) with the dynamics typical when a mixed mode (circle in 
interior) is produced by the interaction of two pure modes (circles on axes). The mixed solution 
is a saddle with separatrix curves (dashed), whose stabilities are given by the arrows. The origin, the 
conduction solution. is unstable. 

methods that the stability of the mixed 2-mode and the pure modes depends on the 
determinant (5.8). The mixed mode is unstable (stable) and the pure modes stable 
(unstable) for det < 0 (> 0). Geometrically, this can be phrased in terms of the angle 
relative to  the origin formed by the lines whose intersection represents the mixed 
mode (figure 4). Indeed, if that angle is re-entrant, the mixed mode (pure modes) is 
(are) unstable (stable). I n  the case under consideration, B(l , l ) /F( l ,  1) > 1, and the 
linear combination of orthogonal x- and y-roll cells is unstable. This is the pattern 
which Zebib & Kassoy (1978) first discovered. 

For h > 0.38 the l l l-mode is unstable by linear theory and plane I11 cuts the 
positive octant ; its intersection with the z-axis gives a finite amplitude 11 1 -convection 
solution. Figure 3(b) ,  drawn a t  the point at which plane I11 just intersects plane I 
and I1 ( A  = 0.66, R = 4.87n2), gives the qualitative picture for 0.38 < h < 0.66. XJp 
to h = 0.66, the l l l-pure mode solution is in a region where dzldt, dyldt > 0, and 
hence is unstable. Over this interval the other three solutions maintain the stability 
they possessed for 0 < h < 0.38. 

At h = 0.66, three new solutions are born, including a mixed 3-mode. The latter 
is represented by the intersection of planes I, I1 and I11 in figure 3(c) with the 
magnitudes of its components given by the solution of the corresponding linear 
system. The other two are an (x, z) and (y, z )  mixed 2-mode located in the y = 0 and 
x = 0 invariant quarterplanes respectively. The stability of these latter solutions is 
determined by a combination of the stability in the plane and that normal to the 
plane. The geometric criterion presented in the discussion of the (x, y) mixed 2-mode 
applies for the in-plane stability. Accordingly the mixed mode is unstable in the plane. 
Of course this is sufficient for instability in 3-space. 

To summarize, for h > 0.66 there are three mixed 2-modes, each lying in a face 
of the positive octant. Each of the invariant quarterplanes containing a mixed 2-mode 
has qualitatively the same dynamics, shown in figure 4. The stationary solution is 
a saddle point with two stable trajectories, one each from the origin and from infinity. 
Particle paths along the two unstable trajectories lead to  the two adjacent pure 
modes. This gives four separatrixes which partition the quarterplane, and the union 
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Increasing h m 

Pure mode, 
X (0) m 

z (0.38) 
Y (0) 

( x ,  Y) (0 )  m 

m 
* 

Mixed 2-mode 

( x .  2) (0.66) - 
(Y> 2) (0.66) --f 

( x .  y, 2) (0.66) --w 
Mixed %mode 

TABLE 2. This birth chart for the cubic box gives the distance h from convection onset at 
which a convection solution is born 

of the two stable trajectories divides the space into two domains of attraction, one 
for each pure mode. Any initial condition on one side of the dividing line evolves to 
the same pure-mode convection state. 

Before considering the stability of the newborn mixed 3-mode, we examine the 
pure modes which persist from lower Rayleigh numbers. Figure 3(c) shows that in 
a neighbourhood of the z-roll, say, both y ( t )  and z ( t )  are monotone decreasing except 
on the x-axis. There the roll is stable with respect to one-dimensional disturbances. 
It follows that the z-roll is linearly stable in the three-dimensional phase space. An 
analogous argument applies to the other pure modes, with the result that they are 
also locally stable in phase space. 

The mixed 3-mode convection solution, a linear combination of the z-roll, y-roll 
and the three-dimensional [ 11 11-mode, is linearly unstable as a straightforward 
calculation shows. The z = y quarterplane which passes through the mixed 3-mode 
is an invariant set of points by symmetry. In  that plane, the 3-mode is a saddle with 
stable trajectories coming from the origin and infinity and unstable trajectories 
leading to the [ i l l ]  pure mode and the (x, y) 2-mode (figure 4).  

The phase-space picture does not change qualitatively for 0.66 < A. However, our 
1 1 -mode truncation with three-step interactions fails to capture higher-order 
contributions which become significant for A x 1.55 so this picture cannot be expected 
to be accurate beyond there. 

The existence and stability of solutions from convection onset is summarized in 
a birth chart (table 2). As the x- and y-roll go unstable by linear theory, finite-amplitude 
locally stable x- and y-roll convection patterns are born, and an arbitrary small-norm 
disturbance will be attracted to one or the other depending on where its initial 
conditions falls in the phase space. By symmetry the domains of attraction occupy 
equal volumes. A linear combination of the orthogonal rolls also exists, but is 
unstable. At R = 4.5n2, a three-dimensional finite-amplitude mode is born but 
remains unstable to the x- and y-roll patterns until R = 4.87x2, where it becomes 
locally stable. As R is increased further, its domain of attraction expands. As the 
stability character of the [ 11 11-mode changes, there occurs simultaneously the birth 
of the three new solutions, all of which are unstable. Two are linear combinations (with 
prescribed proportions) of two pure modes, called mixed 2-modes, and one is a linear 
combination of three pure modes, a mixed 3-mode. The symmetries of transformation 
(5.4) give for these Rayleigh numbers a total of 26 distinct convection solutions, of 
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which 7 have different modal compositions. Of these, only the x-roll, y-roll and 
[ 11 11-mode are stable. We shall discuss the heat-transport properties of these 
solutions in 55.4. 

5.3. The probability of pattern selection: an example 

In any numerical or laboratory experiment disturbances to the system may in general 
include contributions from any of the infinite number of modes. Theory dictates that 
close to convection onset and for disturbances of small amplitude only three of these 
modes are involved in the equilibrium states. Furthermore, the phase-space pictures 
of 55.2 show that the selection of a particular pattern depends only on the relative 
contributions of the three modes to the disturbance amplitude. However, in 
experiments and with some numerical techniques, it is often difficult and sometimes 
impossible to control the character of disturbances. More usual is a situation in which 
large disturbances can be excluded. Hence we consider the probability that a pattern 
will be selected given disturbances with norms less than a certain value. Note that 
since a projection of a disturbance is always smaller than the disturbance, i t  is 
meaningful to consider probabilities within the three-dimensional subspace of 
projections. 

To each attractor belongs a domain of attraction, and the volume fraction of the 
phase space occupied by a domain determines the probability that a particular 
pattern will be selected. We have found the steady-state attractors in 55.2 and now 
must show there are no time-dependent attractors before mapping out the boundaries 
between the domains of attraction. 

First consider the x = y invariant quarterplane which passes through the mixed 
3-mode. It has the same qualitative structure as the other three invariant planes 
(figure 4). I n  particular, a phase-plane analysis demonstrates there are no periodic 
solutions or other time-dependent attractors therein. Based on its invariant property, 
the following argument shows there are no periodic solutions anywhere in the phase 
space. The projection of a three-dimensional periodic solution on the (x, y)-plane 
must also be periodic (it may of course cross itself) and any such projection must lie 
completely on one side or the other of the line x = y since no solutions cross the 
quarterplane x = y. However, the derivative pair (dxldt, dyldt) can only assume the 
signs (+, +), (- ,  +), and ( - ,  -), on, say, the y > x region (see figure 3c), and it 
is therefore impossible to have a periodic projection and hence any periodic solutions. 
This argument extends to  any time-dependent solution that after some interval 
returns arbitrarily close to itself. I n  particular, there are no quasi-periodic or 
almost-periodic solutions. The three steady-state pure modes are the only asym- 
ptotically stable convection patterns. They are competing attractors in phase space, 
and their domains of attraction partition the space into three regions separated by 
separatrix surfaces or sheets (figure 5). 

Part of the system of separatrix surfaces can be determined without computing. 
Indeed, by symmetry part of the x = y quarterplane must separate the domains of 
attraction for the x-roll and y-roll. Another surface separates the domains of the 
three-dimensional pattern from the roll cells. It must pass through the separatrix 
curves in the x = y, x = 0, and y = 0 quarterplanes. However, these separatrix curves 
must be obtained numerically. 

One of the most accurate ways to locate this bounding surface is by its intersection 
with another surface which meets it roughly perpendicularly. It is convenient to use 
a plane x+ y+ :: = constant in phase space as the intersecting surface. Then the 
reiative areas of the surface regions on this ‘energy’ shell give the probabilities of 
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FIQURE 5. The phase space for the cubic box and RIR, > 1.218, showing the surface which separates 
the region of disturbances attracted by the three-dimensional convection pattern (pure mode z )  
from those attracted by one of the roll cells (pure mode z or y). The solutions (circles) are connected 
with each other and the point at infinity by separatrix curves (dashed) which form boundaries for 
the separating surface. The solid lines connect the convection solutions, which lie on the faces of 
the octant and relate the structure to that shown in figure 3(c).  

pattern selection for a disturbance with that norm or ‘energy’. Of course, since the 
solutions are those of a nonlinear system, the relative areas will vary with the 
particular constant of the shell. Furthermore, to generate the probability for equally 
likely disturbances of amplitude less than a certain value, a sequence of such 
energy-shell calculations can be made and the results appropriately weighted and 
summed. 

We illustrate these ideas with a shell calculation for the cubic box a t  R = 50 which 
is just above the point of stabilization of the three-dimensional mode. We admit 
disturbances with unit norm 

which corresponds to the set of points represented by an equilateral triangle through 
(1,0,0), (0,1,0) and (0, 0 , i )  in the positive octant. In  general, the boundaries of the 
domains of attraction within this triangle must be mapped out numerically. Each 
of the four endpoints of these bounding curves lies on the separatrix curve in one of 
the four invariant quarterplanes. We calculate the endpoints first. On the z = 0 face, 
symmetry forces the endpoint to be (&, &, 0) (see figure 6). For the others, by starting 
a trajectory near enough the mixed 2-mode (a saddle point) and reversing the sense 
of time so that trajectories are exponentially attracted to the separatrix connected 
with infinity, accurate approximations of the point where the separatrix crosses the 
energy shell can be achieved numerically. In  order to fill in the curves shown in figure 
6, initial conditions are chosen close to that unique stable trajectory of the mixed 
2-mode which originates a t  the mixed 3-mode (the reversal in time direction is 
maintained). The accuracy of the boundaries of figure 6 depends only on the accuracy 

z+y+z = 1 ,  
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(4. ;, 0) (0, 1, 0) 

FIGURE 6. A triangular slice through phase space showing its intersection with the domain of 
attraction of the three-dimensional pattern (shaded) for the cubic box a t  R = 50. The ‘separatrix’ 
surface (figure 5) intersects this triangle in a curve which is estimated numerically by observing 
where trajectories pierce it ( x marks). 

of the numerical approximation. The shaded area represents the domain of attraction 
for the three-dimensional mode and constitutes 2 1 yo 2 yo of the total area. Therefore, 
provided all disturbances of unit norm are equally likely, there is a 21 yo chance that 
the three-dimensional convection pattern will be selected at R = 50. As R increases 
from 50, plane I11 moves relative to  planes I and I1 (figure 3c) in such a way that 
this probability increases to some limiting value. Of course, if certain disturbances 
are more likely than others, a distribution of weights can be assigned to the points 
in phase space. 

5.4. Comparison with previous results 
We first specialize our results for the cubic box to the case examined by Zebib & 
Kassoy (1978): the x- and y-rolls are the only primary modes. These interact to 
produce one secondary mode [112], which in turn mixes with the primaries to 
reproduce a primary. The resulting amplitude equations are recovered from system 
(5.5) by putting2 = 0, evaluating the coefficientsat (hl ,  h,) = (1, l), and approximating 
R by R, in the nonlinear terms. Taking account of Zebib & Kassoy’s different scaling 
of their governing system puts the resulting amplitude equations in a form identical 
with their system (Zebib & Kassoy 1978, equations (15)), obtained by a standard 
perturbation method. 

In their analysis of the amplitude equations, Zebib & Kassoy point out that, in 
addition to the finite-amplitude x- and y-roll convection states, there is another 
solution, a prescribed linear combination of those rolls, which we call the (x, y) mixed 
2-mode. They calculated that this nominally three-dimensional convection state 
transfers less heat near critical than the roll patterns but did not compute its stability. 
Our analysis (55.2) demonstrates that it isunstable a t  least up to R = 60. Furthermore, 
our results show those amplitude equations are accurate only for R < 4.57t2, a t  which 
point the [ 1 1 11-mode is unstable by linear theory and becomes a finite-amplitude 
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convection state. However, since this new finite-amplitude pattern remains unstable, 
the truncation with two primary modes continues to  give qualitatively correct 
information concerning the stable finite-amplitude patterns up to R = 4.871~~. 
Thereafter, though, say a t  R = 50, we see that more than one in five random 
disturbances of unit norm will go t o  neither x- nor y-roll; the qualitative picture has 
changed significantly. 

Straus & Schubert (1979, 1981) have studied the finite-amplitude convection 
patterns that occur in porous media by using a numerical scheme based on Galerkin’s 
method. They have focused on the cubic geometry (1979) and boxes with square 
planform (1981). 

Among others (Holst & Aziz 1972; Horne 1978), they have pointed out that 
different disturbances may lead to distinct stable steady convection patterns ; in 
particular, over a broad range of Rayleigh number (R < 150), both two-dimensional 
patterns dominated by a roll-cell and a three-dimensional pattern dominated by the 
[l 111-mode can be achieved. The lowest Rayleigh number for which such competition 
is reported is R = 60, well above the value R = 48.06 where we predict the 
three-dimensional 111 11-mode is first observable. 

Although they leave for later study the question ofwhy certain random disturbances 
go to one pattern rather than another, it is noted that emphasis of a particular mode 
in the initial condition can force a particular convection pattern. This is understood 
for R < 60 in terms of our phase-space picture and its domains of attraction (figure 5) .  
This picture shows exactly which contributions to  the initial conditions will lead 
to the three-dimensional pattern. Furthermore, our probability calculation supplies 
a characterization of how random disturbances will evolve. 

The heat-transfer characteristics across the box are expressed by the Nusselt 
number 

(5.9) 

which when evaluated a t  the two- and three-dimensional convection patterns given 
in $5.2 yields respectively 

N,,  = 1 -ZICU,,,, 2D = 1 +4 ( 1 - [ - R;1]7 ? 

N 3 , =  1-21Ca,,,,3D= 

(5.10) 

(5.11) 

where R,,,, R,,,, A and E are defined as functions of (hl, h,) and R by (3.2) and (5.6a, e) 
respectively. Equations (5.10) and (5.11) apply for those R < 60 where the solutions 
exist and for (h,, h2) near (2f,24). Straus & Schubert (1979) report the heat transferred 
by the three-dimensional pattern in the cube from its birth (4.57~~ < R), even though 
it is unstable up to R = 4 . 8 7 7 ~ ~ .  Up to about R = 55, (5.1 1) gives values which cannot 
be distinguished from the numerical results (which are accurate to  within 1 yo). The 
agreement is still good at R = 60, where (5.1 1) predicts 5 yo too-little heat transfer. 
As R increases further, the agreement continues to deteriorate on the low side. This 
occurs since the amplitude of all, has become sufficiently large that in conjunction 
with sufficiently numerous interaction paths a sum of O(a:,,) contributions affects 
the heat transfer. Indeed, the [113]-mode, produced by the N(xll1, x,,,), N(xlll, x,,,) 
and N(x,,, ,  xooz) interactions, becomes large enough to  affect the heat transfer 
through its contribution (upon remixing with [ l l l ] )  to the [002] and [004] temperature 
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fields. This indicates that, for a better approximation, higher-order interaction paths 
and more modes must be accounted for. 

Over the interval from convection onset to R = 60 the two-dimensional rolls 
transfer more heat than the three-dimensional solution, since for fixed Rayleigh 
number they are farther from their point of instability given by linear theory, and 
hence of larger amplitude. The situation changes at higher Rayleigh numbers where 
higher-order interactions boost the amplitude of the three-dimensional solution at 
a faster rate than the roll cells, eventually eliminating the ‘ headstart’ of the latter. 
At R = 60, N 2 D  x 1.1 1 NsD, and Straus & Schubert find that the curves cross a t  R x 97. 

The two-dimensional Nusselt dependence given by (5.10) for the cube is within 1 yo 
of the corresponding numerical results of Straus & Schubert (1979) for R, < R < 60. 
In  light of the above discussion this may a t  first seem contradictory since if higher-order 
effects become significant for the three-dimensional pattern they certainly must be 
more significant for the roll cell, which has a larger amplitude for these Rayleigh 
numbers. However, it is the combination of amplitude and number of interaction paths 
which determines the total effect and in this case the roll cell has Q the interaction 
paths available. Indeed, the nonlinearity eliminates two of three paths which are 
accessible to the three-dimensional pattern since 

(x2023 N(XlO11 XlOA) = ( x 0 2 2 ,  N(Xl01~ XlOl)) = 0. (5.12) 

Neither the [202]- nor [022]-mode is produced in the self-interaction of the roll cell. 
A calculation using relative pattern amplitudes a t  R = 60 shows that this 
inaccessibility can reduce the sum of 4th-order effects from 4 yo to 1 yo of total, which 
corresponds roughly to the deviations we note between the predictions of (5.11) and 
(5.10) and the ‘exact’ solutions respectively. 

Special cases of (5.10) have been reported previously. Zebib & Kassoy (1978) give 
the heat transferred by a roll cell in a cube based on the same interactions that yield 
(5.10). Using a different technique, the ‘ power-integral ’ approach, Combarnous & 
Bories (1975) compute the transfer by roll cells across a horizontally infinite layer. 
They find the same form (for R < 60) as Zebib & Kassoy: 

(5.13) 

Equations (5.10) and (5.13) haveidentical asymptotic behavioursforsmall ( R  - R,)/R,, 
as we expect. However, as this parameter grows they deviate, until, at R = 60, (5.13) 
gives a value 4% below (5.10) and the ‘exact’ numerical solution. Hence, the 
approximation (5.10) seems to converge to the exact solution over a b,roader range 
of Rayleigh numbers. Finally, we note that (5.10) also agrees with the expansion of 
Palm, Weber & Kvernvold (1972) over this range of Rayleigh numbers. 

Provided that the roll cell fits within the lateral boundaries, a requirement that 
affects the critical value RIo1, the nonlinear heat transfer is not otherwise influenced 
by its container, since the only intermediary in the interaction, the motionless 
temperature field, fits all containers. On the other hand, the three-dimensional 
pattern is influenced by the mediating [202]- and [022]-modes, whose amplitude is 
moderated by lateral walls. For tall thin boxes of approximately square planform 
(A+m),  the effect of these modes becomes negligible, since little heat is transferred 
via them. However, the critical value R,,, will be strongly influenced by such a 
geometry change. 

In  qualitative terms, our results for R < 60 support and model ma,ny of the features 
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observed in numerical studies over a much broader range of Rayleigh number (Straus 
& Schubert 1979; Horne 1978). Furthermore, our Nusselt-number results show 
excellent quantitative agreement up to  R = 60, supporting the claim that our 
truncation accurately represents the behaviour up to that point. 

5.5. The stretched box 

We now consider a box for which the y-dimension is stretched by 20 o/o from the cube 
(hl ,  h2) = (1,1.2). Convection onset occurs a t  R, = 39.48 where the x-roll goes 
unstable by linear theory (figure 2). Soon after, at R = 40.81, the y-roll goes unstable, 
followed by the [Ill]-mode a t  R = 42.29. Linear theory also tells us that the 
[021]-mode, the most unstable of those not included in the sum (5.1), is neutrally 
stable at R = 50.7 1. This is an a priori upper limit in Rayleigh number to the accuracy 
of the approximation. 

By an analysis like that described in detail for the cubic box, we obtain the 
existence and stability changes for the finite-amplitude states as Rayleigh number 
increases from convection onset. These may be summarized in the bifurcation 
diagrams (figure 7) ,  an alternative to  the birth chart. The amplitudes of the 
components of the steady solution are plotted as a function of distances from 
convection onset. The pure modes are labelled by ' p ' and the components of the mixed 
mode by the type of mixture. For example, the branches labelled (x,z) in the alOl 
and alll pictures give the amplitudes of the corresponding eigenfunctions whose linear 
combination constitutes an (5 ,  z )  mixed 2-mode solution. All the branches are 
symmetric about zero amplitude, and several distinct convection patterns can be 
constructed from a single mixed-mode solution by switching the signs of the 
constituent amplitudes. 

The points of linear instability mark the births of the pure modes. The stability 
of these and existence and stability of the other solutions are determined by nonlinear 
effects. Instability (local) is represented by dashed curves in figure 7. The x-roll is 
stable from birth to the limit of Rayleigh numbers of interest. As the y-roll and 
three-dimensional pattern come into existence, they are unstable to the x-roll owing 
to its strength. The r-roll remains the sole stable pattern until R = 44.65, when an 
(x, z )  mixed mode is born (unstable) and the finite-amplitude [ l  111-pattern simultan- 
eously stabilizes. At this point the amplitude alll has become large enough to 
overcome the attraction to  the x-roll exerted through the (x, z )  nonlinear interaction. 
This growth in amplitude to sufficient size is the result of two effects. First the 
[Ill]-mode is sufficiently far from its point of linear instability, and secondly the 
[ 11 1]-[11l]-mode resonant nonlinear interaction (represented in part by 
~N(xlll, xlll)l) is weak enough to permit the growth. At R = 46.86 the y-roll undergoes 
a similar stability change, yielding three stable convection patterns. The (r, y) mixed 
%mode, which comes into being at that point, is unstable, as is the (y, z )  2-mode that 
was produced earlier (R = 43.45). Finally, at R = 54.83 (beyond the expected interval 
for accurate approximation), the mixed 3-mode is born and is unstable. I n  this 
Rayleigh-number regime other modes which have become linearly unstable may 
begin to play a significant role in the interaction. Furthermore, when the amplitudes 
are large enough, higher-order interactions will be important regardless of the 
stability status (by linear theory) of the modes involved. 

For the stretched box the stable convection patterns give a Nusselt number 
proportional to the square of the amplitudes. Over the interval of Rayleigh number 
under consideration, this gives the x-roll transferring more heat than the y-roll, which 
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FIGURE 7. The bifurcation diagram for a box with dimensions 1 : l . Z : l  gives the constituent 
amplitudes as a function of distance h from convection onset. The pure modes P are stable (solid 
line) over certain segments, and the mixed modes, labelled by their constituents, are all everywhere 
unstable. 

in turn transfers more heat than the three-dimensional pattern. With increasing 
Rayleigh number, the gap between these curves decreases. 

We note that all the bifurcations represented in figure 7 are of supercritical type 
(they open to the right) and that the only stable modes are pure modes. Furthermore, 
once they stabilize, these pure modes remain stable (within the context of the 
particular truncation). This is characteristic of supercritical bifurcations a t  single 
eigenvalues, and hence the qualitative behaviour of the stable solutions might have 
been guessed from a simpler nonlinear analysis. However, results from other 
geometries show that this need not be the case. 

6.  Summary 
We consider convection in cubic and nearly cubic boxes of porous material and obtain 
the full set of steady convection patterns for Rayleigh numbers 1 < R / R ,  < 1.5. For 
these geometries three of the linear modes go unstable a t  Rayleigh numbers near one 
another, and using a ‘splitting’ parameter the convective states are analysed as 
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bifurcations near a multiple eigenvalue. Up to R/Rc % 1.5, the interactions between 
the unstable modes dominate the behaviour, which is captured by considering 
nonlinear effects to third order. For RIR, z 1.5, fourth-order interactions become large 
enough to contribute 5 %  to the heat transport, and new modes not accounted for 
begin to grow according to linear theory; the approximation breaks down there. 

When the conduction solution goes unstable in the cubic box a t  R = 39.48 x- and 
y-roll finite-amplitude patterns grow with Rayleigh number and compete within 
phase space to attract disturbances. A t  R = 48.06 a finite-amplitude three-dimensional 
pattern becomes stable and joins the competition. As R increases, its domain of 
attraction expands, taking territory from the x- and y-roll patterns; at  R = 50 we 
predict a 21 yo chance that a disturbance with certain fixed norm will go to the 
three-dimensional pattern. Over the range of Rayleigh numbers considered, the birth 
(existence) of a finite-amplitude pattern with structure corresponding to a mode of 
linear theory coincides with the linear instability of that mode. The finite-amplitude 
stability, however, depends upon the linear growth rate of the mode (distance from 
point of linear instability) as well as nonlinear interactions with the other modes. 
Indeed, immediately above convection onset, the x- and y-rolls have larger amplitudes 
than the third existing convection pattern, and the rolls are stable. When the 
three-dimensional pattern comes into existence the rolls continue to dominate until 
that pattern gains sufficient amplitude to overcome the attractions caused by 
nonlinear interactions. Only then does it gain stability. Such existence and stability 
results can be read off a simple geometric construction in phase space. 

The nonlinear system of ordinary differential equations that governs the modal 
interactions has coefficients which we calculate as explicit functions of the aspect 
ratios and Rayleigh number. This permits an analysis of boxes with non-square 
planform, in addition to providing an explicit dependence of heat-transport properties 
on geometry. For example, stretching the y-dimension of the box by 20 yo increases 
the heat transferred by the three-dimensional pattern by 6 % at R = 50. Such a 
geometry change also modifies the existence and stability results ; these are described 
in detail. 

The results of Zebib & Kassoy (1978) are recovered as a subcase of our calculations 
for the cubic box. We show that the cross-roll pattern they discover is unstable and 
remains so (at least up to R = 60), and we obtain the limits in Rayleigh number a t  
which their analysis ceases to give a good approximation. 

Furthermore, the sequence of existence and stability events for R, < R < 60 
corrects several details reported by Straus & Schubert (1981). In particular, the 
superposition of orthogonal two-dimensional rolls, or the cross-roll, is not an observed 
motion. Also, the symmetric [l 1 11-dominated steady solution gains stability 
(R = 48.06) somewhat after it comes into existence (R  = 44.41). 

The phase-space pictures we obtain for the locally stable competing convection 
patterns gives complete information about how each pattern can lose stability to 
another. These pictures provide insight into what has been observed over a broad 
range of Rayleigh number in previous numerical computations. 

The author is indebted to Professor G. M. Homsy for (i) the suggestion that 
convection in a box near the triple eigenvalue could be fruitfully analysed using 
Rosenblat’s method - the idea on which this paper is based - and (ii) his generous 
support throughout this project. 

The author would also like to thank Professor S. Rosenblat for several useful 
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